
A CONTRIBUTION TO THE INTEGRAL THEORY
OF A TURBULENT JET ABOVE A POINT HEAT
SOURCE OF CONSTANT STRENGTH

A. N. Vul’fson and O. O. Borodin UDC 532.529.2:536.24 + 551.511.6

Consideration has been given to the integral model of an unsteady vertical convective jet above a point heat
source of constant strength. It has been shown that this problem is reduced to self-similar equations allowing
the analytical solution. An algebraic invariant relating the parameters of the velocity and the temperature
along the jet axis has been constructed. A comparison of the analytical solution and the existing experimental
data on the propagation of the upper boundary of the convective jet has been made.

Introduction. Unsteady forced convective jets are associated mainly with technogenic heat sources whose
strength changes with time depending on the technological process. The case of a constant source corresponds to the
most typical situation of regular operation of an industrial object. Developing flames are observed above manifolds,
electric power stations, and other industrial heat sources, being of undeniable practical interest in connection with prob-
lems of calculation and prediction of propagation of impurities.

Allowing for the fact that stratification effects virtually do not manifest themselves at low heights, the ap-
proximation of a neutral medium is quite suitable for description of convective jets in the lower 50 m of the atmos-
phere, which are adjacent to the underlying surface.

The first theoretical description of unsteady penetrative convection above a constant point heat source was
performed in [1], where a developing flame was considered as a composition of two well-known integral models: the
model of a steady-state conical jet and the model of a spherical vortex ring. An analogous approach was employed
later in [2].

A fundamentally new integral model of an unsteady convective jet, which considers the flame as a conical
surface with an unsteady cross section, was proposed in [3, 4].

A variant of the integral model of an unsteady floating jet, which employs the notion of a convective front
[5], was realized in [6, 7]. Within the framework of this model, the unsteady convective jet is considered as a cone
with a rising upper cross section. It is precisely this approach that has provided the basis for analytical study of a de-
veloping flame within the framework of the present work.

Problem of a Floating Jet above a Point Heat Source. We consider the problem of propagation of an axi-
symmetric unsteady convective jet in an adiabatic atmosphere above a point heat source. Let the z axis be directed in
opposition to the free-fall acceleration g in the cylindrical coordinate system r, ϕ, z.

To describe the propagation of the jet we employ the Boussinesq convection equations [8] which hold true for
both a gas and a liquid. Let Θ

__
a = const be the static value of the potential temperature of dry air in a stationary at-

mosphere and Θ be the local potential temperature of the air.* Following [8], we introduce θ = (Θ − Θ
__

a)/Θ
__

a, i.e., the
local dimensionless potential temperature.**
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* For an ideal gas the potential temperature Θ is determined by the relation Θ = T(p ⁄ pn)−Rd
 ⁄ cp, where the con-

stant normal pressure of the gas on the underlying surface pn is equal to approximately 1 atm.
** If an incompressible liquid with a constant background density ρhom is selected as the medium, then θ =

−(ρ − ρhom)/ρhom.



We note that, under real conditions, the process of heating is localized in the comparatively small region near
the underlying surface. This circumstance enables us to subsequently style the effect of heating by assigning the cor-
responding point heat source on the underlying surface. Flow in the axisymmetric unsteady convective jet will be con-
sidered in the approximation of a vertical boundary layer [9]:
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The system of equations (1) is considered in the region V = 


0 ≤ r < ∞, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ ∞



, where the infi-

nite upper boundary of the region is identified with the height of the adiabatic atmosphere.
The state of the stationary atmosphere will be taken as the initial condition at t0. Allowing for the fact that

the medium is unperturbed at the upper and lateral boundaries of the region, we take the conditions of nonflow and
of attenuation of flows. At the lower boundary of the region, we assign the strength of the steady-state point heat
source and the zero pulse source:

   lim
z→0

  [w⋅w (r, z, t)] = 0 ,   lim
z→0

  [w⋅θ (r, z, t)] = 
1

2πr
 Q1δ (r) , (2)

where Q1 > 0. Relations (1) and (2) form a closed system of equations.
Integral Model of a Convective Jet Above a Point Heat Source. The real pattern of development of a

flame above a constant source according to the laboratory data of [1] is prescribed in Fig. 1a. In theoretical models
[1, 2], the shape of the convective jet is approximated by a conical surface of constant slope αR, with a height hb and
a spherical head part of radius αRhb, so that the relation ht = (1 + αR)hb holds true for the maximum height of the
flame ht (Fig. 1b). In the case of a stained flame the parameters ht = ht(t) and hb = hb(t) are easily fixed from ex-
perimental data.

In the present model, the convective jet is approximated by a cone of equivalent volume with a plane upper
base (Fig. 1c). The height of the lateral surface of the cone h = h(t) is assigned by the relation h = (1 + αR

 ⁄ 3)hb,
which can be computed from the data of observations.

Thus, in accordance with the Prandtl hypothesis and the models of [6, 7], for the radius of the jet R above
the point source we take the law of linear expansion

Fig. 1. Propagation of the unsteady jet according to [1] (a) and diagrammatic
representations of the developing flame according to the models of [1, 2] (b)
and to the present model (c).
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R (z, t) = αRz ,   0 ≤ z ≤ h (t) , (3)

where the value of αR varies within 0.10–0.18 according to [2]. We do not consider motion in the region z > h(t)
within the framework of subsequent discussion.

The equation describing the propagation of the upper boundary of the conical convective jet in a neutral at-
mosphere above a constant heat source can be obtained based on the dimensional theory [1–3]
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where λ0
2 is the undetermined numerical parameter.*

We employ the integral method of Karman and Pohlhausen for construction of the approximate solution of the
system [9]. It is assumed that the unknown functions in the region of ascending motion 0 ≤ z ≤ h(t) are approximated
by relations with separable variables, in which the D sign corresponds to the parameters on the jet axis:
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To compare to the existing models [3, 4] we employ the exponential approximations of the parameter profiles
in accordance with the known experimental data [10]:

fw (ξ) = exp (− λwξ2) ,   fθ (ξ) = exp (− λθξ2) ,   ξ = r ⁄ R , (6)

where, from the data of [10], λw
 ⁄ λθ = 1.35 and λw = 96αR

2.
Substituting (5) and (6) into Eqs. (1) and integrating the equations obtained over the cross-sectional area of

the jet, we obtain
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here αg = λw
 ⁄ λθ is a constant coefficient.

We should supplement Eqs. (7) with the boundary conditions

   lim
z→0

  [w~w~R
2
 (z, t)] = 0 ,   lim

z→0
  [w~θ

~
R

2
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2
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 . (8)

To compute the unknown parameter λ0
2 we employ the kinematic equation at the upper boundary of the ther-

mal (air bubble). Following [5, 6], we introduce the characteristic velocity of movement of the convective front
ŵ(h, t) as a weighted average over the temperature:

* The factor 4/3 in (4) has been employed for consistency with the previous works of the authors.
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Assuming that the movement of the upper boundary is determined by the convective heat flux [5], we repre-
sent the kinematic condition for z = h(t) in the form

dh
dt

 = c
−2 ⁄ 3 ŵ (h, t) = c

−2 ⁄ 3 (1 + αg)−1
 w~ (h, t) , (10)

where c is the assigned constant. According to [6], the values c = 1 and c2 = k2 = αg
 ⁄ (1 + αg) are theoretically jus-

tified.
Self-Similar Solution of the Development of a Jet above a Constant Point Heat Source. Let z∗  = z/h(t) be

the dimensionless parameter. For 0 < z < h(t) we will seek the self-similar solution (7) in the form
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(11)

The substitution of (11) into system (7) leads to a system of ordinary differential equations when 0 < z∗  < 1:
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In accordance with (8), boundary conditions (12) have the form*
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The system of equations (12) allows the analytical solution
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* Analogous self-similar relations can also be obtained for heat sources whose strengths vary according to ar-
bitrary power laws and for instantaneous and exponential sources (see [6]).
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The undetermined factor λ0
2 can be computed from kinematic condition (10) and Eqs. (11) and (14). We have
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We have λ0
2 = 9.03⋅10−2 when c2 = 1, and λ0

2 = 5.15⋅10−2 when c2 = k2 = αg/(1 + αg) = 0.57. The parameter λ0
2 com-

puted agrees fairly well with λ0
2 = 7.02⋅10−2 obtained from observations of the propagation of thermals in air [11].

The amplitudes of (14) supplemented with the profile relations (6) enable us to calculate the spatial field of
the unsteady jet in self-similar variables z∗  = z/h and r∗  = r ⁄ h. In particular, for the potential temperature we have
θ∗ (r∗ , z∗ ) = θ∗ (z∗ ) exp 




−71(r∗  ⁄ z∗ )2



. The numerical calculations from the above formula for λ0

2 = 5.15⋅10−2 and αR =
0.12 are presented in Fig. 2.

Fig. 2. Isolines of the field of the normalized dimensionless potential tempera-
ture θ∗ (r∗ , z∗ ) in self-similar dimensionless spatial variables r∗  and z∗ .
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Comparison to Laboratory Experiments. For comparison to the data given in [1, 12], we pass from the
height h to the height hb observed (see Fig. 1b). Allowing for the fact that h = (1 + αR

 ⁄ 3)hb and taking into account
(11) and (14), we obtain w~(h) ⁄ w~(hb) = (1 + αR

 ⁄ 3)1 ⁄ 3. Thus, the kinematic condition (10) takes the form

dhb

dt
 = aw~ (hb, t) ,   a = c

−2 ⁄ 3 (1 + αg)−1
 (1 + αR

 ⁄ 3)−4 ⁄ 3 . (16)

The values of the parameter a computed from formula (16) are presented in Table 1 for assigned values of c.
The data obtained are in good quantitative agreement with the experimental values of a = 0.49 and a = 0.47

given in [1] and [2] respectively.
Algebraic Invariant of an Unsteady Jet. We consider the ratio of the kinetic and potential energy along the

axis of an unsteady jet. Then, in accordance with (11) and (14), we obtain
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Relation (17) represents the local energy invariant establishing the algebraic relationship of the amplitude pa-
rameters along the axis of the unsteady convective jet. Formula (17) can be interpreted in the same manner as the law
of uniform energy distribution in degrees of freedom along the jet axis.

The presence of such invariants is very typical of convection problems. The existence of the invariants was
pointed to for the first time by Scorer [12] in experimental investigation of supernatant thermals. The corresponding
invariants for a thermal, a steady-state forced jet, and a steady-state spontaneous jet have been give in [6, 13, 14].

We consider the problem of energetics of the unsteady convective jet
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With account for (17), we compute the ratio
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Expression (19) means that the same law of energy distribution in degrees of freedom is obeyed at any cross
section of the convective jet.

CONCLUSIONS

The proposed self-similar solution of the problem of an unsteady convective jet above a constant-strength
point source corresponds rather well to the existing experimental data. The analytical solution of the problem proves
the existence of an algebraic invariant relating the amplitude characteristics along the jet axis.

TABLE 1. Computed Values of the Parameter a

c2 αR

0.10 0.12 0.14 0.16 0.18

1 0.41 0.40 0.40 0.40 0.39

0.57 0.49 0.49 0.48 0.48 0.47
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NOTATION

u and w, velocity components along the r and z axes respectively, m/sec; νw and νθ2
, coefficients of turbulent

exchange for the vertical velocity and the dimensionless potential temperature, m2/sec; Q1, constant strength of the
point heat source, m3/sec; δ(r), Dirac delta function; w~ and θ

__
, vertical velocity and dimensionless potential temperature

on the axis of the unsteady jet, m/sec; h, height of the upper boundary of the jet, m; fw and fθ, dimensionless hori-
zontal profiles of the vertical velocity and the potential temperature; λw and λθ, numerical parameters characterizing
the dimensionless horizontal profiles of the vertical velocity and the potential temperature; w∗ , R∗ , and S∗ , normalized
dimensionless functions of the vertical velocity, the radius, and the strength of the heat source; t, time, sec; t0, initial
instant of time, sec; r, ϕ, z, cylindrical coordinate system, g, free-fall acceleration, m/sec2; Θ

__
a, static value of the po-

tential temperature of dry air in a stationary atmosphere; Θ, local potential temperature of the air; T, potential tempera-
ture of the gas, K; p and pn, local pressure and constant normal pressure of the gas on the underlying surface, Pa;
Rd, gas constant of the dry air; cp, specific heat capacity at constant pressure; θ, local dimensionless pulsation of the
potential temperature, dimensionless quantity; ρhom, constant background density of a homogeneous liquid; ρ, local
value of the liquid density; R, radius of the jet, m; αR, coefficient of angular expansion of the jet radius; hb, height
of the lateral surface of the jet cone, m; ht, height of the center the jet, m; z∗  and r∗ , normalized vertical and hori-
zontal coordinates; θ∗  and θ∗ , normalized potential temperature on the jet axis and at arbitrary points r∗  and z∗ ; Ek and
Ep, kinetic and potential energies in the assigned cross section of the jet, m4/sec2. Subscripts and superscripts: 0, in-
itial; 1, steady-state; a, adiabatic; n, normal; hom, homogeneous; d, dry;  b, lower; t, upper; k, kinetic; p, potential; *,
dimensionless.
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